Детектирование нескольких эхо сигналов 3d лидар. Применение. Когда беспилотные автомобили станут массовым продуктом

Теги: Лидар, излучатель, сигнал, когерентный, некогерентный, сканирующая оптика

Лидары

Л идар (LIDAR англ. Light Identification Detection and Ranging - световое обнаружение и определение дальности) - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Лидар как прибор представляет собой активный дальномер оптического диапазона. Сканирующие лидары в системах машинного зрения формируют двумерную или трёхмерную картину окружающего пространства. «Атмосферные» лидары способны не только определять расстояния до непрозрачных отражающих целей, но и анализировать свойства прозрачной среды, рассеивающей свет. Разновидностью атмосферных лидаров являются доплеровские лидары, определяющие направление и скорость перемещения воздушных потоков в различных слоях атмосферы.

Принцип действия


Принцип действия лидара не имеет больших отличий от радара: направленный луч источника излучения отражается от целей, возвращается к источнику и улавливается высокочувствительным приёмником (в случае лидара - светочувствительным полупроводниковым прибором); время отклика прямо пропорционально расстоянию до цели.


Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, и измеряется время, через которое сигнал вернется к источнику. Свет распространяется очень быстро - 3∙10 8 м/с. Однако он возвращается с некоторой задержкой, которая зависит от расстояния до объекта.

Расстояние, которое прошел фотон на пути до объекта и обратно, можно рассчитать по формуле:

L = c ∙ t пролёта 2

Оборудование, необходимое для измерения этого малого промежутка времени, должно работать чрезвычайно быстро.

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Во всех случаях радиотехническая система обнаруживает сигналы на фоне помех. Считается, что полезный сигнал имеет частоту, равную резонансной частоте настройки системы ω c = ω 0 . Начальная фаза равна нулю:

U c t = U cm sin ω 0 t

Сумма сигнала и помехи:

U сп t = u с t + u п t = U cm + U п1 sin ω 0 t + U п2 cos ω 0 t

где U п1 и U п2 – амплитуды помех.

  • Некогерентное детектирование (прямой метод измерения): Реагирование происходит на амплитуду суммарного колебания и помехи U спm .Превышением сигнала над помехой называется следующее отношение: m нкг 2 = U cm 2 U п1 2 + U п2 2 = U cm 2 2σ 2 где σ 2 – дисперсия каждой из амплитуд помехи U п1 и U п2
  • Когерентное детектирование: Полностью исключает ортогональную к сигналу составляющую помех. Оно предусматривает реагирование лишь на колебание, равное сумме амплитуды сигнала Ucm и синфазной составляющей помехи U п1. Превышением сигнала над помехой при когерентном обнаружении называется отношение m нкг 2 = U cm 2 U _ п1 2 , где U _ п1 2 – дисперсия амплитуды синфазной составляющей. Когерентные системы лучше всего подходят для доплеровских или фазочувствительных измерений и, как правило, используют оптическое гетеродинное детектирование. Это позволяет им работать при гораздо меньшей мощности, но при этом конструкция фотоприемной схемы намного сложнее.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

  • Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями. Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.
  • Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеиванию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды - достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Излучатель

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и следующие длины волн (в нанометрах):

  • 1550 нм - инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн
  • 1064 нм - ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения
  • 532 нм - зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды
  • 355 нм - ближнее ультрафиолетовое излучение

Также возможно использование вместо коротких импульсов непрерывной амплитудной модуляции излучения переменным напряжением.

Сканирующая оптика

Простейшие атмосферные лидарные системы не имеют средств наведения и направлены вертикально в зенит.

Для сканирования горизонта в одной плоскости применяются простые сканирующие головки. В них неподвижные излучатель и приёмник также направлены в зенит; под углом 45° к горизонту и линии излучения установлено зеркало, вращающееся вокруг оси излучения. В авиационных установках, где надо сканировать полосу, перпендикулярную направлению полёта самолёта-носителя, ось излучения - горизонтальна. Для синхронизации мотора, вращающего зеркало, и средств обработки принимаемого сигнала используются точные датчики положения ротора, а также неподвижные реперные риски, наносимые на прозрачный кожух сканирующей головки.

Сканирование в двух плоскостях добавляет к этой схеме механизм, поворачивающий зеркало на фиксированный угол с каждым оборотом головки - так формируется цилиндрическая развёртка окружающего мира. При наличии достаточной вычислительной мощности можно использовать жёстко закреплённое зеркало и пучок расходящихся лучей - в такой конструкции один «кадр» формируется за один оборот головки.

Приём и обработка сигнала

Важную роль играет динамический диапазон приёмного тракта. Чтобы избежать перегрузки приёмника интенсивной засветкой от рассеивания в «ближней зоне», в системах дальнего радиуса действия применяют высокоскоростные механические затворы, физически блокирующие приёмный оптический канал. В устройствах ближнего радиуса со временем отклика менее микросекунды такой возможности нет.

Современное состояние и перспективы

Исследования атмосферы

Исследования атмосферы стационарными лидарами является наиболее массовой отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

Раннее оповещение о лесных пожарах

Лидар, размещённый на возвышенности (на холме или на мачте) и сканирующий горизонт, способен различать аномалии в воздухе, порождённые очагами пожаров. В отличие от пассивных инфракрасных систем, распознающих только тепловые аномалии, лидар выявляет дымы по аномалиям, порождаемым частицами горения, изменению химического состава и прозрачности воздуха и т. п.

Исследования Земли

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы.

Строительство и горное дело

Лидары, сканирующие неподвижные объекты (здания, городской ландшафт, открытые горные выработки), относительно дёшевы: так как объект неподвижен, то особого быстродействия от системы обработки сигнала не требуется, а сам цикл обмера может занимать достаточно долгое время (минуты).

Морские технологии

Измерение глубины моря . Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы . Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.

Спасение людей на море . В 1999 ВМС США запатентовали конструкцию авиационного лидара, применимого для поиска людей и человеческих тел на поверхности моря; принципиальная новизна этой разработки - в применении оптического маскирования отражённого сигнала, снижающего влияние помех.

Разминирование . Обнаружение мин возможно с помощью лидаров, непосредственно погруженных в воду (например, с буя, буксируемого катером или вертолётом), однако не имеет особых преимуществ по сравнению с активными акустическими системами (сонарами).

На транспорте

Определение скорости транспортных средств . В Австралии простейшие лидары используются для определения скорости автомобилей - так же, как и полицейские радары. Оптический «радар» существенно компактнее традиционного, однако менее надёжен в определении скорости современных легковых автомобилей: отражения от наклонных плоскостей сложной формы «запутывают» лидар.

Беспилотные транспортные средства . В 1987-1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому союзу более 1 млрд долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известный прототип, VaMP (разработчик - Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой.

Промышленные и сервисные роботы . Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30°. Собственно дальномер, установленный внутри сканирующей оптической головки, работает на постоянном излучении малой мощности, модулированном несущей частотой порядка 10 МГц. Расстояние до целей (при несущей 10 МГц - не более 15 м) пропорционально сдвигу фаз между опорным генератором, модулирующим источник света, и ответным сигналом.

Ru-Cyrl 18- tutorial Sypachev S.S. 1989-04-14 [email protected] Stepan Sypachev students

Всё ещё не понятно? – пиши вопросы на ящик

Почти все полицейские силы мира (в т.ч. и ГАИ) используют радары для измерения скорости, принуждения выполнения скоростного режима и пополнения казны. С момента разработки этих устройств, за ними неотступно следуют антирадары. К несчастью, у полиции есть два туза — они могут выбирать время и место для своих <отстрелов> (и повышают их убойную силу, выбирая места, опасные или нет, где большинство нормальных людей ездит быстро) и объявлять нелегальными наиболее эффективные контрмеры, такие как наведение помех и использование антирадаров.

Радар посылает пульсирующий или непрерывный сигнал радиочастоты и слушает отражение этого сигнала. Когда импульс достигает движущегося объекта, его частота изменяется в соответствие со скоростью и направлением движения (эффект Допплера). Также появились новые системы, использующие лазерное излучение для определения скорости.

Существует три основных частотных диапазона, в которых работают полицейские радары, обычно называемые X-диапазон (11 ГГц), K-диапазон (24 ГГц) и Ka-диапазон (32-36 ГГц). Все радар-детекторы слушают эти частоты и пищат, чирикают и моргают, когда обнаруживают сигнал. Повышение чувствительности антирадара позволяет раньше обнаруживает радар. К сожалению, эти частоты используются также различными полезными устройствами, такими как системы автоматического открывания дверей гаража, охранными системами, а также присутствуют в излучении линий электропередач. Отсюда растет вторая сторона проблемы — антирадары, которые ловят все подряд и чаще врут, чем предупреждают.

Лидар (Lidar, лазерный радар) — новый враг

Лидар, в отличие от обычного радара, использует лазерное излучение (длина вольны около 900нм) для определения скорости автомобиля. Он через некоторые промежутки времени измеряет расстояние от устройства до цели, и его изменению вычисляет скорость. Поскольку измеряется расстояние очень важно, чтобы лидар был установлен стабильно и капитально для получения правильных значений, и обычная цель (автомобиль) в этом случае превращается в набор поверхностей, которые являются хорошими отражателями. Это очень важно, поскольку устройство использует отражение лазерного луча от цели для измерения расстояния.

С точки зрения водителя, основное отличие от радара состоит в сложности обнаружения. Размер пятна луча составляет около 4 футов на расстоянии в полмили (120см на 800м), и оно очень мало для захвата детектором. Кроме того, все устройства этого класса автоматически отключают излучатель после произведения замера, а не работают непрерывно, как большинство радаров.

Фоторадар — простейший способ собирать деньги

Очередной виток в войне радаров и антирадаров — фоторадар, при обнаружении которым вы узнаете об этом только по получении квитанции на штраф. Он имеет маломощный радар той или иной конструкции для определения скорости и фотографирует автомобиль, движущийся с превышением скорости (вплоть до номеров и лица за рулем). Спорить бесполезно — машина не врет. Некоторые фоторадары оборудованы устройством поворота, позволяющем сканировать некоторый участок дороги, что еще более затрудняет их обнаружение и уменьшает вероятность ошибки. Радар, определяющий скорость, весьма маломощный, его радиус действия обычно не превышает 30-50м, что также затрудняет его обнаружение, особенно если он загораживается постройками или другими автомобилями.

Используется несколько типов подобных устройств:

  • Австралия использует Fairy slant radar system, использующую радар K-диапазона с углом 45 градусов.
  • Новая Зеландия и часть Канады — Auto patrol Ka-фоторадар, достаточно убийственный. Он использует маломощный радар на 34.6 ГГц с углом 22.5 градуса и делает фотографии автомобилей, движущихся в обоих направлениях. Однако он не делает снимок, если обнаруживает несколько автомобилей в кадре для экономии пленки. Частота предусмотрительно выбрана как третья гармоника X-диапазона, где большинство радар-детекторов имеют пониженную чувствительность для подавления бытовых помех.

Vascar (Visual Average Speed Computer and Recorder)

Это не радарная система. Суть в том, что есть две отметки на дороге. В момент пересечения первой включается таймер, в момент пересечения второй — выключается. Расстояние между отметками — фиксированное. Скорость вычисляется. Единственная контрмера — внимательность.

Контрмеры

Наведение помех (Radar jamming)

Со времен противостояния электронные контрмеры стали весьма популярны. Если пропустить рассуждения на тему законности использования таких устройств и перейти к технической стороне вопроса, что дает наведение помех? Существуют шумелки (джаммеры) двух типов — активные и пассивные. Пассивные принимают сигнал радара, зашумляют его и передают обратно _без_усиления_. Основная проблема этого метода видна, если сравнить площадь антенны устройства (около 1 кв.дюйма) с фронтальной площадью автомобиля. Любой сигнал шумелки будет подавлен сигналом от остальной части автомобиля и благополучно отфильтрован системой шумоподавления радара. Исследования подобных устройств показали их весьма низкую эффективность (см. оригинальный текст, там есть ссылки).

Гораздо более эффективные (а следовательно и более незаконные) — активные шумелки. В этом случае устройство посылает мощный сигнал, подавляющий отраженный автомобилем. Как пример — VCDD Stealth, цена около 700 USD (в Новой Зеландии). Состоит из низкокачественного широкополосного детектора излучения, по сигналу которого включается излучатель на той же частоте. По мнению журналов Car & Drivers и NZ Autonews, существуют несколько серьезных проблем при использовании данного устройства:

  • Работает только вперед
  • Плохо работает в коротковолновом диапазоне
  • Работает только в диапазонах X и K
  • Имеет большие габариты
  • Намертво глушит другие детекторы на мили вокруг Учитывая высокую стоимость, незаконность и пп.1-5 представляется не очень удобным использование такого устройства. По другим информации нет.

Прятки (Stealth)

Лучший способ спрятаться от радара — обклеить автомобиль материалом, используемым на знаменитых самолетах-невидимках, однако есть некоторые трудности с его наличием в продаже. Поэтому, для начала, следует обратить внимание на фронтальный профиль автомобиля. Очевидно, что автомобиль с низким профилем, мотором сзади и закрытыми подъемными фарами (Mazda RX7), отражает сигнал в обратном направлении гораздо хуже, нежели минивэн или трейлер. Вообще, автомобиль с низким лобовым сопротивлением, теоретически отражает сигнал куда угодно, только не в обратном направлении, а с учетом использования в современных автомобилях пластмасс и т.п. профиль для отражения сигнала радара еще более уменьшается. Однако, информации о каких-либо формальных исследованиях на эту тему нет.

Наведение помех на лидары (Lidar jamming)

В отличие от радара, лазерное излучение — это свет, и в этом смысле его подавление проще и более легально. Car & Driver magazine (апрель 1994) поместил неплохую заметочку, в которой, в частности, говорилось о том, что использование пары мощных противотуманок позволяет уменьшить расстояние действия лидарного спидометра в два раза, что при наличии детектора дает несколько дополнительных секунд. Robert Weverka и Craig Peterson в своей статье (Autotronics, март 1995, стр. 36) утверждают, что это не работает, однако не объясняют, почему C&D получили положительные результаты.

Прятки от лидаров (Lidar stealth)

Лидар работает на принципе отражения светового (лазерного) луча от поверхности цели, поэтому лучший способ скрыться от него — иметь автомобиль с низким профилем, черного цвета, без хромированных деталей и покрытый грязью. Неплохо, также иметь покрытие (чехлы?) на большие блестящие поверхности для подавления отражения. Тестов на эту тему не попадалось.

Детекторы

Детекторы радаров по сути — радиоприемник, который моргает, пищит или чирикает когда принимает сигнал частоты, на которой работают радары. Не считая разных лампочек, основное различие между детекторами — чувствительность и подавление случайных срабатываний. В большинстве случаев — это взаимоисключающие параметры.

Общественное мнение и обзоры

Производители детекторов постоянно предлагают новые модели. Цена не всегда определяет качество. Некоторые дешевые модели показывают неплохие результаты. С другой стороны некоторые дорогие имеют откровенные провалы в определенных диапазонах.

На что обращать внимание

При покупке, кроме цены смотрите на:

  • чувствительность — иногда производители помещают результаты тестов, должна быть не ниже 110 дБ
  • память — возможность сохранения настроек
  • Mute (выключение звука) — на случай сплошного потока полицейских машин с радарами
  • Скрытность (монтажа) — в случае если использование детекторов запрещено законами страны
  • Регулировка громкости
  • Диапазон — K/Ka/X — band, lidar
  • Наличие разных лампочек и тонов звука для разных источников излучения

Где устанавливать

Обычно, лучшее место для установки детектора вверху лобового стекла, рядом с зеркалом. Это позволяет увеличить дальность действия и обеспечивает хороший <обзор> дороги. Исключение составляют автомобили, имеющие солнцезащитную металлизированную полоску по лобовому стеклу, которая блокирует работу детектора.

Детекторы детекторов

В некоторых странах, где запрещено использование детекторов, используются детекторы радар-детекторов (например, VG2 в Канаде). Их принцип работы основан на улавливании частоты, используемой в супергетеродинах приемников детекторов. Многие производители детекторов учитывают эту тонкость, и выпускают <невидимые> детекторы, такие как модели Bel и Valentine One, а Whistler выпускает подели оснащенные детекторами детекторов.

Важно отметить, что ни одна из систем не является эффективной на 100 процентов. Кроме того, периодически появляются новые разновидности радаров, разработанные с использованием последних технологий и существующие антирадары становятся неэффективными.

На данный момент существует единственный действенный способ избежать штрафов за превышение скорости – не лихачить!

Как концепция, лидар уже насчитывает несколько десятилетий. Впрочем, интерес к этой технологии в последние годы резко вырос, поскольку сенсоры становятся меньше, усложняются, а сфера применения продуктов с технологией лидара всё больше расширяется.

Слово лидар представляет собой транслитерацию LIDAR (Light Detection and Ranging - световая система обнаружения и измерения дальности). Это технология получения и обработки информации об удаленных объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах. Лидар как прибор подобен радару, поэтому его применение - это наблюдение и обнаружение, но вместо радиоволн как в радаре в нем используется свет, генерируемый в подавляющем большинстве случаев лазером. Термин лидар зачастую используется равноправно с термином ладар, который означает laser detection and ranging (лазерное обнаружение и измерение дальности), хотя, по мнению Джо Бака, руководителя исследовательских работ в Coherent Technologies, входящего в дивизион космических систем компании Lockheed Martin, эти две концепции с технической точки зрения различны. «Когда вы смотрите на что-то, что может рассматриваться как мягкий объект, например твердые частицы или аэрозоль в воздухе, специалисты стремятся использовать лидар, когда говорят об обнаружении этих объектов. Когда вы смотрите на плотные, твердые объекты, например автомобиль или дерево, тогда вы склоняетесь к термину ладар». Чуть подробнее о лидаре с научной точки зрения смотрите раздел «Лидар: как это работает».

«Лидар был предметом исследований в течение многих десятилетий с момента своего появления в начале 60-х годов», - продолжил Бак. Впрочем, интерес к нему заметно вырос с начала этого столетия благодаря, прежде всего, техническому прогрессу. Он привел в качестве примера визуализацию с помощью синтезированной апертуры. Чем больше телескоп, тем более высокое разрешение объекта может быть получено. Если вам необходимо чрезвычайно высокое разрешение, тогда может понадобиться гораздо более крупная оптическая система, что может быть не очень удобным с практической точки зрения. Визуализация при помощи синтезированной апертуры решает эту проблему за счет использования движущейся платформы и обработки сигналов с целью получения действительной апертуры, которая может гораздо больше физической апертуры. Радиолокаторы с синтезированной апертурой (РСА) используются уже много десятилетий. Однако, только в начале 2000-х начались практические демонстрации формирования оптических изображений с синтезированием апертуры, несмотря на то, что лазеры уже широко использовались в то время. «Реально понадобилось больше времени для разработки оптических источников, которые имели бы достаточную стабильность в широком диапазоне регулировки... Совершенствование материалов, источников света и детекторов (используемых в лидарах) продолжается. Вы не просто обладаете способностью проводить теперь эти измерения, вы способны выполнять их в небольших блоках, что делает системы практичными касательно размеров, веса и энергопотребления».


По данным компании Lockheed Martin, интерес к лидару возрос в начале этого столетия благодаря, конечно же, достижениям в области технологий. На фото система WindTracer компании Lockheed Martin на страже аэропорта Мюнхена

Также становится проще и практичнее собирать данные от лидара (или информацию, собранную лидаром). Традиционно она собиралась с сенсоров летательных аппаратов, говорит Ник Розенгартен, руководитель Geospatial Exploitation Products Group в компании ВАЕ Systems. Впрочем, сегодня сенсоры могут быть установлены на наземных транспортных средствах или даже в заплечных рюкзаках, что подразумевает сбор данных человеком. «Это открывает целый ряд возможностей, данные теперь могут собираться как в помещениях, так и на открытом воздухе», - пояснил Розенгартен. Руководитель дивизиона геопространственных решений в компании Textron Systems Мэт Моррис утверждает, что «лидар представляет собой реально удивительный массив данных, поскольку он предоставляет обширнейшую детализацию поверхности Земли. Он дает гораздо более детализированную и, если можно так выразиться, более оттеночную картинку, чем технология цифровых данных топографических высот DTED (Digital Terrain Elevation Data), которая предоставляет информацию касательно высоты земной поверхности в определенных точках. Возможно, одним из самых мощных сценариев использования, о котором я слышал от наших военных заказчиков, является сценарий развертывания в незнакомой местности, ведь им необходимо знать, куда им предстоит идти... подняться на крышу или перелезть изгородь. Данные DTED не позволяют вам видеть это. Вы не увидите даже зданий».

Моррис отметил, что даже некоторые традиционные данные о высотах точек рельефа местности с высоким разрешением не позволят вам увидеть эти элементы. А вот лидар позволяет это сделать из-за своего «шага позиций» - термин, описывающий дистанцию между позициями, которые могут быть точно показаны в массиве данных. В случае с лидаром «шаг позиций» может быть уменьшен до сантиметров, «поэтому вы можете точно узнать высоту крыши здания или высоту стены или высоту дерева. Это реально повышает уровень трехмерной (3D) ситуационной осведомленности». Кроме того, стоимость сенсоров лидар снижается, как и их размеры, что делает их более доступными. «Десять лет назад сенсорные системы лидаров были очень большими и очень дорогими. Они действительно имели высокое энергопотребление. Но по мере своего развития, совершенствования технологий, платформы становились значительно меньше, снижалось энергопотребление, а качество генерируемых ими данных повысилось».


Городской ландшафт, сгенерированный программным инструментом Lidar Analyst компании Textron. Он позволяет изучать местность, извлекать 3D ландшафты и показывать информацию в программах 3D визуализации


Серия снимков лидара, сделанная с помощью приложения SOCET GXP от ВАЕ Systems. Монтирование мозаики (сбор последовательных снимков) может быть выполнено с данными лидара вне зависимости от того, как они были получены

Моррис сказал, что основное применение лидара в военной области - это 3D планирование и отработка боевых задач. Например, продукт Lidar Analyst его компании для моделирования условий полетов позволяет пользователям принимать большие объемы данных и «быстро генерировать эти 3D модели, затем они могут очень точно планировать свои задачи». То же самое верно и для наземных операций. Моррис пояснил: «Наш продукт используется для планирования путей входа и выхода в район цели, а так как исходные данные имеют высокое разрешение, то можно проводить очень точный анализ обстановки в пределах прямой видимости».

Наряду с Lidar Analyst компания Textron разработала RemoteView - программный продукт анализа изображений, заказчиками которого являются американские военные и разведывательные структуры. Программное обеспечение RemoteView может использовать различные источники данных, в том числе данные с лидара. Компания BAE Systems также предоставляет программное обеспечение (ПО) для геопространственного анализа, ее флагманским продуктом здесь является SOCET GXP, который обеспечивает множество возможностей, включая использование данных лидара. Кроме того, как пояснил Розенгартен, компания разработала технологию GXP Xplorer, которая представляет собой приложение управления данными. Эти технологии вполне подходят для военного применения. Розенгартен, например, упомянул об инструменте для расчета посадочной зоны вертолета, который входит в состав ПО SOCET GXP. «Он может брать данные лидара и предоставляет пользователям информацию о зонах на земле, которых может быть достаточно для посадки вертолета». Например, он может подсказать им, есть ли вертикальные препятствия на пути, например, деревья: «Люди могут использовать этот инструмент для определения зон, которые могут быть лучше всего подходить в качестве эвакуационного пункта во время гуманитарных кризисов». Розенгартен также подчеркнул потенциал метода «монтирование мозаикой», когда множественные массивы данных лидара собираются с конкретной зоны и «сшиваются» друг с другом. Это стало возможным в связи с «повышенной точностью метаданных лидарных сенсоров в комбинации с таким ПО, как например, приложение SOCET GXP от BAE Systems, которое может превратить метаданные в точные зоны на земле, рассчитанные с помощью геопространственных данных. Процесс основывается на данных лидара и не зависит от того, как эти данные собраны».


Компания Lockheed Martin видит возможное военное применение для своей технологии WindTracer. Это коммерческий продукт, в котором используется лидар для измерения ветрового сдвига в аэропортах. Подобная технология может быть использована в военной сфере для повышения точности выброски с воздуха. На фото система WindTracer в аэропорту Дубая

Как это работает: лидар

Лидар работает, подсвечивая цель светом. В лидаре может использоваться свет видимого, ультрафиолетового или ближнего инфракрасного диапазонов. Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, измеряется время, через которое сигнал вернется к источнику. Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени между передачей светового импульса и его отражением, исходя из постоянной скорости света равной 299792 км/с. Измеряя этот промежуток времени можно вычислить дистанцию между лидаром и отдельной частью объекта и, следовательно, построить изображение объекта на основе его положения относительно лидара.

Сдвиг ветра

Тем временем господин Бак указал на возможное военное применение технологии WindTracer от Lockheed Martin. Коммерческая технология WindTracer использует лидар для измерения ветрового сдвига в аэропортах. Такой же процесс может использоваться в военной сфере, например, для точной выброски с воздуха. «Вам необходимо сбросить запасы с достаточно большой высоты, для этого вы складываете их на поддоны и сбрасываете с парашюта. А теперь посмотрим, где они приземлятся? Вы можете попробовать и предсказать, куда они улетят, но проблема состоит в том, что пока вы снижаетесь, ветровой сдвиг на разных высотах меняет свое направление, - пояснил он. - И как вы после этого предскажите, где поддон приземлится? Если вы можете измерить ветер и оптимизировать траекторию, то вы можете доставить запасы с очень высокой точностью».

Лидар также используется в наземных безэкипажных транспортных средствах. Например, производитель автоматических наземных аппаратов (AHA), компания Roboteam, создал инструмент, названный Top Layer. Это 3D технология картографирования и автономной навигации, которая использует лидар. Top Layer задействует лидар двумя способами, рассказывает руководитель компании Roboteam Шахар Абухазира. Первый позволяет картографирование закрытых пространств в реальном времени. «Иногда видео недостаточно в подземных условиях, например, может быть слишком темно или видимость ухудшилась из-за пыли или дыма, - добавил Абухазира. - Возможности лидара позволяют вам уйти от ситуации с нулевыми ориентацией и пониманием окружающей обстановки... теперь он составляет карту комнаты, он составляет карту тоннеля. Незамедлительно вы можете понять обстановку, даже если вы ничего не видите и даже, если вы не знаете, где вы находитесь».

Второе применение лидара заключается в его автономности, помощи оператору в контролировании более одной системы в любой данный момент. «Один оператор может контролировать один AHA, но есть два других AHA, которые просто отслеживают управляемый человеком аппарат и следуют за ним автоматически», - пояснил он. Подобным же образом солдат может войти в помещение, а АНА просто следует за ним, то есть нет необходимости откладывать в сторону для того, чтобы управлять аппаратом. «Это делает работу простой и интуитивной». Более крупный AHA Probot компании Roboteam также имеет на борту лидар, который помогает проходить ему большие дистанции. «Вы не можете требовать от оператора, чтобы он жал кнопку три дня подряд... вы используете лидарный сенсор для того, чтобы просто следовать за солдатами, или следовать за машиной или даже в автоматическом режиме перемещаться от одного пункта к другому, лидар в этих ситуациях поможет избежать препятствий». Абухазира ожидает в будущем крупных прорывов в этой области. Например, пользователи хотели иметь ситуацию, в которой человек и АНА взаимодействуют подобно двум солдатам. «Вы не контролируете друг друга. Вы смотрите друг на друга, вы зовете друг друга и действуете точно так, как должны действовать. Я полагаю, что в известном смысле мы получим этот уровень общения между людьми и системами. Это будет более эффективно. Я считаю, что лидары ведут нас в этом направлении».


Программный продукт TopLayer компании Roboteam позволяет AHA картографировать закрытые пространства в реальном времени. Порой видеосъемки бывает недостаточно в этих условиях: может быть либо темно, либо видимость недостаточна из-за пыли и дыма

Идем под землю

Абухазира также надеется, что лидарные сенсоры улучшат проведение операций в опасных подземных условиях. Лидарные сенсоры дают дополнительную информацию, выполняя картографирование тоннелей. Кроме того, он заметил, что порой в небольшом и темном тоннеле оператор может даже не понять, что ведет AHA не в том направлении. «Лидарные сенсоры работают как GPS в реальном времени и делают процесс похожим на видеоигру. Вы можете видеть вашу систему в тоннеле, вы знаете, куда движетесь в реальном времени».

Стоить отметить, что лидарные сенсоры это еще один источник данных и не должны рассматриваться как прямая замена радара. Бак заметил, что имеются большая разница в длине волн этих двух технологий, которые имеют свои преимущества и недостатки. Зачастую лучшим решением является использование обеих технологий, например, проведение измерения параметров ветра при помощи аэрозольного облака. Более короткие длины волн оптических сенсоров обеспечивают лучшее определение направления по сравнению с более длинными волнами радиочастотного сенсора (радара). Впрочем, свойства пропускания атмосферы очень разнятся для двух типов сенсоров. «Радар способен проходить сквозь облака определенных типов, с которыми лидару было бы сложно справиться. Но в тумане, например, лидар может показать себя чуть лучше радара».

Розенгартен сказал, что сочетание лидара с другими источниками света, например, панхроматическими данными (когда изображение строится с использованием широкого диапазона световых волн) даст полную картинку исследуемой зоны. Хорошим примером здесь является определение посадочной площадки для вертолета. Лидар может просканировать зону и сказать, что она имеет нулевой уклон, не принимая во внимание, что фактически он смотрит на озеро. Этот тип информации может быть получен за счет использования других источников света. Розенгартен считает, что промышленность, в конечном счете, займется слиянием технологий, сведением вместе различных источников визуальных и иных световых данных. «Она найдет способы свести все данные под одним зонтиком... Получение точной и исчерпывающей информации - это не просто использование данных лидара, а комплексная задача с привлечением всех доступных технологий».

По материалам сайтов:
www.nationaldefensemagazine.org
www.lockheedmartin.com
www.baesystems.com
www.textron.com
www.robo-team.com
www.robotshop.com
www.Geo-Plus.com
www.nplus1.ru

22 мая 2017

Сегодня все большую популярность набирает технология светового обнаружения и определения дальности - LIDAR (Light Identification Detection and Ranging). Наши эксперты следят за развитием индустрии и подготовили обзор статьи, посвященной этой технологии.

Технологии дополнят камеры и радары в автономном транспорте

Полностью автономный транспорт будущего будет полагаться на комбинацию различных сенсорных технологий - продвинутых систем зрения, радара и системы светового обнаружения и определения дальности (лазерного локатора). Из этих трех, лазерный локатор на данный момент - самая дорогостоящая часть уравнения, и весь мир прилагает усилия по снижению этих цен.

Сейчас на рынке доступны механические лазерные локаторы, стоящие сотни долларов. Эти цифры необходимо уменьшить для того, чтобы массовое применение лазерных локаторов оправдывало себя в гибкой автомобильной отрасли.

Помимо фактора цены, поставщики лазерных локаторов должны показать высокую производительность и надежность своих продуктов. Для продвинутых систем помощи водителю и автоматизированного вождения недостаточно иметь надежность в 99%. В критических (с точки зрения безопасности) аспектах автомобильного производства, оборудование должно показывать надежность «шести девяток» - 99,9999%.

Важность продвинутых технологий в автомобильном транспорте не может быть переоценена. Предложенная Intel сделка на сумму 15,3 миллиарда долларов по приобретению Mobileye, израильского поставщика систем компьютерного зрения, хороший тому пример. Производитель чипов и Mobileye объединились с BMW в прошлом году для совместной работы над технологией автономного транспорта.

Лазерный локатор - ключевой компонент этой технологии, и инвесторы держат свои кошельки широко раскрытыми для стартапов, работающих над этой технологией. В марте 2017 года инвесторы вложили 10 миллионов долларов в TetraVue - стартап, работающий над лазерным локатором в городе Карлсбад, Калифорния. Список инвесторов включает в себя Foxconn, Nautilus Venture Partners, Robert Bosch Venture Capital и Samsung Catalyst Fund.

Стартап программного обеспечения для самоуправляемых машин Autonomic, расположенный в Пало-Алто, Калифорния, получил около 11 миллионов долларов от Ford Motor и Social Capital. Четыре сооснователя ранее работали в Pivotal Labs.


Движущие силы технологий

Technavio прогнозирует совокупный среднегодовой темп роста для мирового рынка автомобильных датчиков лазерной локации более чем на 34% до 2020 года (Рисунок 1). По оценке исследующей рынок фирмы, рынок лазерных локаторов составил 61,61 миллион долларов в 2015 году, с наибольшим спросом в Европейском/Средневосточном/Африканском регионах, а также в Северной и Южной Америке.

В июне 2016 года компания в открытый доступ выложила отчет «Глобальный рынок автомобильных датчиков лазерной локации 2016-2020», и будет обновлять этот отчет в течение третьей четверти текущего года.

«Технология лазерной локации в автомобильной индустрии испытывает быструю эволюцию, как в рамках технического прогресса, так и в рамках динамики рынка» , - утверждает Сиддхарт Джайсвал , один из ведущих аналитиков индустрии исследований автомобильной электроники Technavio.

Среди ключевых разработок, названных Technavio:

  1. Снижение стоимости для увеличения масштаба. Производители лазерных локаторов работают над снижением стоимости системы, применяя эффективные методы обработки, а в некоторых случаях, позиционируя продукты для каждого сегмента клиента в отдельности: «Цена 64-лучевого блока лазерной локации Velodyne HDL-64E, который используют в беспилотном автомобиле Google, стоит 80000 долларов», - заявляет Джайсвал . «Velodyne также предлагает 32-лучевые и 16-лучевые блоки лазерной локации по цене 40000 долларов и 8000 долларов соответственно, которые могут быть использованы в более экономичных проектах. Мы ожидаем, что технология лазерной локации пойдет по «стопам радара» в автомобильной индустрии, где цена играла ключевую роль в принятии рынком. Следовательно, цена является ключевым фактором для игроков рынка» .
  2. Компактный дизайн. Первый датчик лазерной локации Velodyne, выпущенный в 2005 году, был настолько большим и тяжелым (он весил около 5 килограмм), что должен был быть расположен на крыше автомобиля. Сейчас сенсор весит менее килограмма, а твердотельная версия достаточно компактна, чтобы поместиться внутри машины.
  3. Сочетание датчиков. Технологический тренд совмещения датчиков изображения с датчиком лазерной локации был популярной темой для исследований на протяжении более десяти лет. Выходные данные становятся более надежными, если в результате сочетания информация, полученная одним датчиком, подтверждает информацию датчика другого типа. Однако, если данные одного датчика не сходятся с данными другого, система становится ненадежной.
  4. Использование лазерных локаторов за пределами автомобилей для управления дорожными активами. Исследования по оценке состояния дорожного покрытия (TRACS) были введены для сети магистральных дорог Англии в 2000 году. Автодорожное агентство Великобритании проводит регулярные автоматизированные исследования состояния дорожного покрытия магистралей в рамках исследования TRACS. Лазерный локатор используется для измерения расстояния до датчика и, потенциально, может предоставлять данные об объектах, находящихся на гораздо более большом расстоянии от исследовательской машины, чем при исследовании TRACS.

Рисунок 1.
Источник: Technavio


«Лазерный локатор находится на очень прибыльной позиции среди датчиков автономного вождения» , - утверждает Джайсвал. «360-градусная карта - его главное отличие от других сенсорных технологий, а его возможности в отношении обнаружения объектов даже в условиях полного отсутствия света нашли свое место среди оригинальных производителей оборудования. К тому же, явное падение цены самого дорогого компонента беспилотного автомобиля - блока датчиков лазерной локации, вероятно приведет к принятию автомобильных лазерных локаторов. Например, в 2016 году, Velodyne представила свой новый лазерный локатор ULTRA Puck VLP-32A. По заявлениям, это самый доступный лазерный локатор, способный, по определению SAE (Сообщество автомобильных инженеров), достигать уровней автономного вождения 1-5, а также он очень компактный, по сравнению с предыдущими версиями продуктов из этой индустрии. Из-за твердотельной архитектуры, сенсор достаточно маленький, чтобы быть установленным на наружные зеркала заднего вида, при этом радиус 3D-зондирования увеличен до 200 метров (656 футов). Velodyne установила целевое ценообразование из расчета менее чем 300 долларов за один блок, что в масштабах массового автомобильного производства - значительное снижение цены с 7900 долларов за предыдущий компактный блок лазерного локатора» .

Более того, лазерный локатор может быть разработан с использованием проверенных технологий полупроводниковых процессов, а твердотельная версия не имеет движущихся частей.

«Лазерный локатор считается ключевой технологией для точного 3D-картирования, «ощущения автомобиля» и навигации» , - утверждает Пьер Камбу , директор отдела работы с изображениями компании Yole Developpement. «Происходит соревнование в производительности и долговечности, для этого используются коротковолновые инфракрасные (SWIR) диоды, лавинные фотодиоды или однофотонные лавинные фотодиоды. Также прилагаются большие усилия по снижению цен. Это направлено в основном на то, чтобы сделать лазерный локатор полупроводниковым с помощью управляемых лазеров, микрозеркал МЭМС или детекторных решеток» .

Но Камбу заметил, что существуют разные подходы к автономному вождению, и лазерный локатор не является необходимым для каждого из них. «Лазерный локатор - это основополагающее оборудование для беспилотного транспорта, который я предпочитаю называть роботизированным транспортом. В будущем будет существовать много уровней автономности. Лазерный локатор может быть необходим для экстренного торможения в городских условиях, вероятно в сочетании с радарами и камерами. Этот мультимодальный подход сейчас четко определен. Никто не ставит его под сомнение» .

Рынок лазерных локаторов будет расти по мере уменьшения цен: от 600 миллионов долларов на сегодняшний день до 1,2 миллиардов в течение следующих пяти лет (Рисунок 2). «Сегодня три точки входа в автомобильную индустрию: 3000 долларов, 300 долларов и 30 долларов» , - заявил он. «Камеры на текущий момент находятся на ценовом уровне в 30 долларов, а лазерный локатор на уровне 3000 долларов. Цель производителей лазерный локаторов сейчас - снизить цену и достигнуть цели в 300 долларов, без значительных потерь производительности. Такие лазерные локаторы, вероятно, созданные на основе твердотельных подходов, появятся на рынке в течение следующих трех лет» .

Это малая часть рынка зрительных датчиков. «Консенсус здесь в том, что прибыль от автомобильных радаров и автомобильного зрения почти одинакова, но зрение на 50% состоит из современной системы содействия водителю (ADAS) и на 50% - из системы помощи при парковке», - сказал Камбу. «Мы достигли оборота датчиков автомобильного зрения в 1 миллиард долларов в 2016 году, и среднегодового темпа роста в 24%. Верхняя черта - 7.3 миллиарда прибыли в сфере датчиков автомобильного зрения к 2021 году».


Рисунок 2.
Источник: Yole Developpement.


Что работает, а что нет

Амин Каши , директор отдела современных систем содействия водителю и автономного вождения в Mentor Graphics, дочерней компании Siemens, заявил, что интерес к лазерным локаторам возник более десяти лет назад, в связи с высокой ценой радаров на тот момент, которые стоили по 500 долларов за штуку. Лазерные локаторы тогда были чрезвычайно дорогими, до 260000 долларов за блок.

«Три года назад, некоторое количество компаний или стартапов начали интересоваться сферой лазерных локаторов и инвестировать в неё средства» , - говорит Каши. «Каждая крупная компания внезапно начала вкладывать деньги или покупать компании, работающие в сфере лазерных локаторов» .

В число таких компаний входили Continental и TRW. Каши ранее работал в компании Quanergy Systems, которая разработала механический лазерный локатор, а сейчас работает над лазерным локатором с фазированной решеткой. Твердотельный лазерный локатор Quanergy продается по 250 долларов за штуку.

Тем временем, Mentor Graphics предоставляет оригинальным производителям оборудования и крупным компаниям аппаратное и программное обеспечение, а также услуги по проектированию в сфере лазерных локаторов. «Мы также предоставляем программное обеспечение обработки изображений, которое может быть запущено на их датчиках. В конце концов, все сенсоры должны быть каким-то образом соединены. Необходима вычислительная платформа или система, которая собирает всю эту разную информацию и делает её понятной для системы принятия решений. Вот в чем заключается наш интерес» .

«Камеры, лазерные локаторы и радары дополняют друг друга, восполняя недостатки каждой технологии» , - заявил он. «Это играет критическую роль, так как лазерный локатор может быть менее эффективным в тумане, при низких облаках, песчаных бурях, сильном дожде и сильном снегопаде».

«Все еще необходимо иметь очень высокое разрешение датчиков, используемых на беспилотном транспорте» , заметил Амин Каши. «Существует множество компаний, работающих над технологиями лазерной локации, множество стартапов и у них очень убедительные концепции. Интересно будет посмотреть, будет ли их путь к коммерциализации успешным. Некоторые из них совсем неоригинальны, но переход от отличной концепции к датчику автомобильного класса - очень сложная задача. И она требует больших вложений» .

Сравнения между различными технологиями лазерной локации не всегда прямолинейны, и растущая конкуренция не делает их проще.

«Существует множество обманчивой информации» , - заявляет Луай Эльдада , исполнительный директор стартапа Quanergy. «Есть люди, которые делают традиционные механические лазерные локаторы: большие, крутящиеся механические лазерные локаторы, используемые на вертолетах, и они называют их гибридными твердотельными, потому что содержание полупроводника в них не равно нулю. Это просто обман».

По словам Эльдады, такие продукты имеют один маленький чип, в продукте размером с ведро. «В автомобильной сфере никто уже не использует механические лазерные локаторы. Мы уверены, что наш твердотельный локатор является самой захватывающей разработкой в этой сфере».

В прошлом году Quanergy получила 90 миллионов долларов во втором инвестиционном раунде, что увеличило общую сумму частных инвестиций до 150 миллионов долларов, а также увеличило стоимость самой компании более чем до 1 миллиарда долларов. Delphi Automotive, GP Capital, Motus Ventures, Samsung Ventures и Sensata Technologies совершили вклады во втором инвестиционном раунде.

XenomatiX - другой стартап, специализируйщийся на твердотельных лазерных локаторах. «Стартапы сейчас лидируют в разработках, которые считаются необходимыми при автономном вождении» , - заявил Филип Гайенс , исполнительный директор Бельгийской компании. «Некоторые большие компании тратят много денег и серьезно инвестируют, чтобы получить датчики и программное обеспечение, необходимое для автономного вождения. Большинство этих компаний, с точки зрения технологий, двигаются в одном направлении. Мы ожидаем, что все они столкнутся с серьезными трудностями. Мы же, напротив, двигаемся в другом направлении и делаем вещи немного иначе. Мы считаем, что это лучший способ преодолеть трудности» .

«XenomatiX пытается избавиться от дезориентации при зондировании среди систем лазерных локаторов, связанной с тем, что многие системы используют прямое время полета, испуская один луч света или одну вспышку света» , - заявил Гайенс . «Метод, который используем мы, заключается в отправке тысяч лучей одновременно. Это довольно сложно. Мы также придерживаемся техники безопасности для защиты глаз. Это самая важная трудность, которая одинакова для всех нас. Мы испускаем множество лучей одновременно и это делает все еще сложнее. С другой стороны, это делает систему более надежной в реальных условиях, где несколько лазерных локаторов работают одновременно».

Некоторые компании утверждают, что камер и радаров для автономного вождения достаточно, однако Гайенс так не считает. Он утверждает, что вождение автомобиля происходит в объемном мире, а лазерный локатор незаменим при зондировании во всех направлениях.


Неразбериха на рынке

Одна из больших проблем в индустрии - спрос и предложения между оригинальными производителями оборудования и ведущими компаниями. Оригинальные производители оборудования ожидают от ведущих компаний, необходимых им продвинутых технологий, в то время как ведущим компаниям требуются проверенные технологии, прежде чем они смогут представить их оригинальным производителям оборудования. Согласно многочисленным инсайдерам в индустрии, поставщики автомобильных частей не хотят иметь большие затраты на научно-исследовательские и опытно-конструкторские работы без обязательств оригинальных производителей оборудования по объемам закупок.

«Находящееся на рассмотрении приобретение компанией Intel фирмы Mobileye - большой шаг вперед во введении высокотехнологичных продуктов в автомобильную индустрию» , - утверждает Гайенс .

Соревнование на пути к беспилотному транспорту и количество технологических инноваций, которое требуется, чтобы достичь этого, меняет некоторые из использованных ранее подходов.

«На данный момент, технология лазерной локации - совершенно новое слияние технологий» , - считает Жан-Ив Дешен , президент Квебекской компании Phantom Intelligence. «Это слияние обусловлено автомобильной индустрией» .

Пять-десять лет назад лазерный локатор преимущественно использовался в архитектурных, картографических и военных целях. Блоки выглядели как огромные, громоздкие устройства с огромным количеством зеркал.

«Многие находятся в поиске решения» , - заявил он. «Недавние исследования и компании, о которых мы много слышим, сейчас пытаются заменить эти зеркала. Мы воспроизводим принцип сканирования лазерного локатора путем использования зеркал МЭМС и управления лучем. Много методов картирования двигается в этом направлении. В Phantom Intelligence мы уверены, что решение заключается в использовании вспышечного лазерного локатора. Вспышечный лазерный локатор- скорее аналог 3D-камеры. Вместо узкого луча, который постепенно проходит по полю зрения для воссоздания изображения, происходит вспышка лазерного импульса на большом пространстве, а для восстановления изображения используется множество пикселей» .

«Недостаток лазерного локатора - эхо, возвращающееся на датчик» , - заметил Дешен , сторонник «более умной» обработки сигналов, как он её называет. Он считает, что будет существовать пять уровней автономного вождения, полностью автономный транспорт появится в 2025 году, а широкое распространение получит в 2030 году.


Реальное положение дел

Лазерный локатор – хорошо известная технология, которая наконец нашла себе выгодное применение на рынке.

«Сам принцип лазерной локации, отправленный с импульсом свет и эхо времени полета сильно не изменился» , - заявил один из источников в индустрии. «Физический принцип никогда не менялся с момента изобретения, уже на протяжении 40 лет. Изменения касаются скорее составных частей и системной интеграции. Никакого изменения фундаментального принципа» .

Источник заметил, что вспышечный лазерный локатор находился в разработке на протяжении последних пяти лет, и за это время получил сходства с датчиком КМОП. «Технология вспышечного лазерного локатора - сфера, требующая пристального внимания. Она предоставляет очень дешевое решение, но не высокую производительность» .

Кевин Уотсон , старший руководитель отдела разработки товаров Microvision (Редмонд, Вашингтон), не согласен. «Я не считаю, что это приведет к каким-то результатам» , - высказался он о вспышечном лазерном локаторе. «На протяжении многих лет Святым Граалем лазерных локаторов считались лазерные сканеры на основе МЭМС-зеркал, потому что они невероятно маленькие, относительно недорогие в производстве в больших количествах и очень надежные. К тому же, достаточнокомпактные, чтобы спрятать несколько штук в автомобиле» .

Уотсон называет лазерный локатор «самым важным датчиком» в автомобильной электронике. «Системы зрения - это здорово, но они абсолютно пассивны, а лазерный локатор активен» . Но и у лазерного локатора есть свои ограничения. Радар может распознать стену и имеет большую дальность действия, способен работать в тумане, а лазерная локация и зрение могут быть сбиты с толку. «До достижения четвертого уровня автономности (предшествующего самому высокому уровню) еще далеко» , - заявил Уотсон . «Это не будет реализовано на протяжении следующих десяти лет. Это очень, серьезная проблема. Еще слишком многое нужно сделать» .


Научно-исследовательская работа студента (УНИРС) по теме:

«Зеркальные схемы лидарных объективов»

Санкт-Петербург

Введение

1. Принцип действия лидара

2. Устройство лидара

3. Оптические схемы объективов лидаров

3.1 Объектив Ньютона

3.2 Объектив Кассегрена

3.3 Объектив Грегори

Заключение

Введение

Термин “лидар” является аббревиатурой английского выражения light identification, detection and ranging (обнаружение и определение дальности с помощью света).

Лидар - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Как прибор, лидар представляет собой оптический локатор для дистанционного зондирования воздушных и водных сред. Также к лидарам относят оптические локаторы, которые позволяют дистанционно получать информацию о твердых объектах.

Лидары востребованы и пользуются популярностью благодаря достоинствам используемых в них лазерах:

· Когерентность излучения

· Малая длина волны излучения и, как следствие, малые потери из-за расходимости

· Мгновенная мощность излучения

Совокупность этих свойств делает использование лидара незаменимым на дистанциях от сотен метров до нескольких километров.

1. Принцип действия лидара

Импульсное излучение лазера посылается в атмосферу. Затем, рассеянное атмосферой в обратном направлении, излучение собирается телескопом и регистрируется фотоприемником с последующей оцифровкой сигналов.

импульсный лидар телеобъектив оптический

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной и известной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями.

Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.

Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

2 . Устройство лидара

Большинство лидаров состоит из трех частей:

· Передающая часть

· Приемная часть

· Система управления

Передающая часть (а) лидара содержит источник излучения - лазер и оптическую систему для формирования выходного лазерного пучка, т.е. для управления размером выходного пятна и расходимостью пучка.

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн:

1550 нм -- инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света -- так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека

1064 нм -- ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения

532 нм -- зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды

355 нм -- ближнее ультрафиолетовое излучение

Приёмная часть (б) состоит из объектива (телескоп), спектрального и/или пространственных фильтров, поляризационного элемента и фотодетектора. Излучение, отраженно-рассеянное от исследуемого объекта, концентрируется приемной оптикой (телескопом), а затем проходит через анализатор спектра. Этот прибор служит для выделения интервала длин волн, в котором проводятся наблюдения, и, следовательно, для отсечки фонового излучения на других длинах волн. Анализатор может представлять собой либо сложный, тщательно настраиваемый моно- или полихроматор, либо набор узкополосных фильтров, включая фильтр отсечки излучения на длине волны лазерного передатчика.

Излучатель и приемный блок могут быть далеко разнесены друг от друга или выполнены в едином блоке, что в последние годы является обычным. Оси излучателя и приемника могут быть совмещены (коаксиальная схема) или разнесены (биаксиальная схема).

Система управления(в) выполняет следующие задачи:

ѕ Управление режимом работы лидара;

ѕ Управление частотой зондирующего излучения лазера;

ѕ Измерение энергии излучения в выходящем и принимаемом двухчастотном лазерном пучке на обеих частотах;

ѕ Обработка результатов, т.е. получение спектральных характеристик атмосферы, определение наличия и концентраций примесей по имеющимся в базе данных компьютера «спектральным портретам» молекул;

ѕ Управление системой наведения лидара на исследуемый объект.

В своем исследовании я решил подробно рассмотреть схемы объективов, используемых в различных лидарах.

3 . Оптические схемы объективов лидаров

Обратный сигнал от исследуемого объекта должен быть перехвачен приемным объективом лидара, отфильтрован (пространственно и спектрально) и направлен на чувствительную площадку фотоприемника. Все это должно быть сделано с максимальной эффективностью, без значительных потерь полезного светового сигнала, собранного объективом, и с максимальным подавлением всех помех, зашумляющих сигнал. Проследим прохождение полезного сигнала через приемную систему и рассмотрим отдельно каждый элемент этой системы.

Лазер освещает на объекте пятно, размер которого определяется расходимостью пучка 2 и расстоянием до объекта R: D=2Rtg2R. Часть отраженного и рассеянного в обратном направлении излучения собирается объективом, как показано на рис.: (лазер и приемный объектив соосны).

Показаны только крайние лучи пучков от точек в пятне, попадающих в объектив. При больших расстояниях лучи от точки практически параллельны друг другу. Назначение объектива - собрать достаточное количество света от пятна и спроецировать пятно на фотоприемник. Поэтому основными параметрами объектива являются светособирающая площадь, фокусное расстояние и поле зрения. Для космических лидаров, когда расстояние до исследуемых слоев атмосферы или земли достигает сотен километров, необходимо использовать объективы с большим диаметром 1…3 м и даже больше, чтобы собрать достаточно света, особенно при работе в режимах комбинационного рассеяния или дифференциального поглощения. Диаметр d и фокусное расстояние f" определяют светосилу объектива (относительное отверстие d/f"). Чем светосильнее система, тем меньше размер изображения, которое она формирует. Поле зрения объектива определяется углом, под которым луч от крайней точки пятна проходит через центр входного зрачка объектива (на рис.). Размер изображения (не более размера фотоприемника), эквивалентное фокусное расстояние (с учетом дополнительных перепроецирующих элементов в спектральном блоке приемника) и угол поля зрения связаны соотношением 2a = 2f"tg, которое позволяет выбрать параметры конкретных схем и подобрать необходимые элементы. Во многих случаях пятно проецируется не на фотоприемник непосредственно, а в плоскость полевой диафрагмы (первичное изображение), которая ограничивает поле зрения объектива. Регулируя размеры полевой диафрагмы, можно изменять эффективный размер пятна, проецируемого на фотоприемник. Другими словами, она позволяет менять пространственное разрешение измерений, а также уменьшать шумовую засетку от многократно рассеянного света. Перепроецирование первичного изображения также является способом борьбы с рассеянным внутри объектива светом. Когда полевая диафрагма имеет максимальный размер, производят взаимную юстировку лазера и приемного объектива лидара (по максимуму принятого сигнала). При измерениях диафрагма имеет минимальный размер. Диафрагма обычно бывает ирисовая или в виде диска с отверстиями разного диаметра.

Поскольку лидар работает с удаленными объектами, объектив должен строить изображение практически из бесконечности на конечное расстояние (в фокальной плоскости). Т.е. используются телеобъективы. Оптический расчет телеобъектива производят с учетом того, что аберрационное размытие края изображения должно быть минимальным или приемлемым с точки зрения световых потерь (виньетирование полевой диафрагмой). В системах типа дальномеров, сканеров, батиметров диаметр объектива небольшой - от 15 до 150 мм. Поэтому объективы обычно линзовые.

Объективы, используемые в лидарах:

· Зеркальные (рефлекторы) - используют в качестве светособирающего элемента зеркало.

· Зеркально - линзовые (катадиоптрические) - в качестве оптических элементов используются и зеркала, и линзы. Стоит отметить, что линзы по размеру сравнимы с главным зеркалом и служат для коррекции формируемого им изображения.

Зеркала можно сделать облегченными, что важно для авиационных и особенно космических систем. Зеркальные системы строят по классическим схемам телескопов: Ньютона), Грегори и Кассегрена. После первичного фокуса условно приведен линзовый объектив, что означает наличие некоторой дополнительной оптики в приемной системе. Зеркальные системы всегда имеют центральное экранирование, даже в схеме Ньютона, в которой в фокусе на оси размещен приемник. При небольших полях зрения в единицы угловых секунд и малых относительных отверстиях (d/f" менее 1:10) вместо параболоида в схеме Ньютона используют сферу, что предпочтительно из экономических соображений. Из-за невысоких требований к качеству изображения (надо только собрать энергию) иногда удается заменить вторичное гиперболическое зеркало на сферическое. Возможны также варианты схемы типа Кассегрена с главным сферическим зеркалом и вторичным асферическим зеркалом высокого порядка. Такие схемы полезны для космических лидаров с большими телескопами.

Варианты взаимного расположения лазера и приемного телескопа:

В первой схеме для совмещения оптических осей используется тыльная поверхность диагонального плоского зеркала. Во второй схеме приемный телескоп используется и как формирующий, что требует ужесточения требований к его качеству (иначе лазерный пучок сильно разойдется). Кроме того, в ней неизбежны потери из-за использования светоделителя. В третьей схеме используются отверстия в главном и диагональном (или вторичном) зеркалах. Центральные зоны всегда нерабочие. Используют также схемы, в которых оси лазера и телескопа не совмещены - параллельны или взаимно наклонены. Такие схемы не позволяют максимально эффективно использовать энергию лазерного пучка, но позволяют избавиться от яркого пятна на оси (почти нулевое поле зрения), которое может вызвать перенасыщение приемника. При энергетических расчетах следует учитывать гауссово распределение энергии в лазерном пучке

3.1 Объектив Ньютона

Данная схема была изобретена Исааком Ньютоном в 1668 году. Здесь главное (параболическое) зеркало направляет излучение на небольшое плоское диагональное зеркало, расположенное вблизи фокуса. Оно, в свою очередь, отклоняет пучок излучения за пределы трубы, где он попадает на приемное устройство.

Данная схема обладает минимальным количеством оптических элементов, что обуславливает простоту юстировки, невысокие требования к обработке зеркал и невысокую стоимость изготовления. Главное зеркало в силу своего большого размера требует времени на термостабилизацию. Также требуется периодическая подстройка зеркал, склонная утрачиваться при транспортировке и в процессе эксплуатации. Система несвободна от аберрации комы.

Объектив Ньютона используется во многих лидарах, рассмотрим некоторые из них:

1) Многоволновый рамановский лидар MRL-400

В основу работы этого лидара положено явление комбинационное рассеяния света (эффект Рамана) -- неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.

Излучение лазера телескопируется внеосевым параболическим зеркальным коллиматором. Лазер вместе с коллиматором крепится на приемном телескопе, что позволяет проводить измерения под любым углом к горизонту.

структура лидара MRL-400

Источник излучения: Nd:YAG лазер Quantel Brilliant с генератором третьей гармоники

Энергия в импульсе: 300/300/200 мДж - 1064/532/355 нм

Частота повторения: 10 Гц

Внеосевой параболический зеркальный коллиматор с коэффициентом увеличения 5. Диэлектрические зеркальные покрытия обеспечивают работу коллиматора на длинах волн 355, 532, 1064 нм.

Телескоп Ньютона с апертурой 400 мм и фокусным расстоянием 1200 мм.

2) Многоволновый аэрозольный лидар PL-200

структура лидара PL-200

Источник излучения: Nd:YAG лазер с генератором третьей гармоники.

Энергия на длине волны 355 нм: 70 мДж

Частота повторения: 25 Гц

Расходимость пучка: < 1 мрад

Коллиматор: Внеосевой параболический коллиматор с диэлектрическими покрытиями и коэффициентом увеличения 5 предназначен для одновременного телескопирования излучаемых длин волн (1064, 532, 355 нм).

В лидаре используется телескоп Ньютона с апертурой 300 мм. Главное зеркало является параболическим с фокальным расстоянием 970 мм.

3.2 Объектив Кассегрена

Схема была предложена Лореном Кассегреном в 1672 году. Главное зеркало большего диаметра (вогнутое; в оригинальном варианте параболическое) отбрасывает излучение на вторичное выпуклое меньшего диаметра (обычно гиперболическое). Вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Традиционный рефлектор Кассегрена сложен в производстве (сложные поверхности зеркал - парабола, гипербола), а также имеет недоисправленную аберрацию комы. Последний недостаток исправлен в различных модификациях схемы Кассегрена.

Из зеркальных объективов построенный по схеме Кассегрена пользуется наибольшей популярностью благодаря сочетанию компактности и большого фокусного расстояния.

Рассмотрим некоторые лидары, в которых используется приёмный телескоп, построенный по схеме Кассегрена:

1) Стационарный лидарный комплекс МВЛ-60

Многоволновой лидар МВЛ-60 предназначен для оперативного дистанционного анализа характеристик атмосферного аэрозоля и облачных образований в атмосфере с помощью лазера, работающего на длинах волн 1064 (ИК), 532 (зеленый) и 355 (УФ) нм.

Приемная антенна лидара представляет собой телескоп, чаще всего зеркальный, построенный обычно по схеме Ньютона или Кассегрена. В телескопе лидара МВЛ-60 с диаметром главного параболического зеркала 60 см реализованы обе эти схемы.

При работе в качестве приемной антенны лидара в телескопе реализуется схема Кассегрена, когда принятый отраженный сигнал лазера попадает вначале на главное параболическое зеркало, затем на вторичное гиперболическое зеркало, а далее через отверстие в центре параболического зеркала в блок анализатора, где затем разводится по разным фотоприемникам и регистрируется компьютером.

При работе в качестве обычного астрономического прибора в телескопе реализуется схема Ньютона: на оптическую ось главного параболического зеркала вводится плоское зеркало, при помощи которого принятое главным зеркалом изображение выводится под углом 90 град. вдоль поворотной оси телескопа. В этом фокусе Ньютона можно поместить окуляр либо видеокамеру и получать изображения объектов звездного неба.

2) Многоволновой лидар с Рамановскими каналами

Излучатель импульсный: Nd:YAG лазер

Длина волны:1064, 532 и 355 нм

Энергия импульса: 100/55/30 мДж

Длительность импульса: 10 нс

Частота посылки импульсов: 10 Гц

Диаметр лазерного пучка (расширенный): 50 мм

Расходимость лазерного излучения: 0.3 мрад

Телескоп (диаметр): Кассегрен, 300 мм первичное зеркало

Угол приема излучения: 0.6 - 5 мрад

Длины волн упругого рассеяния: 1064, 532, 532 деполяризация и 355 нм

Рамановские длины волн: 387, 407, 607 нм

3 . 3 Объектив Грегори

Данная схема была изобретена Джеймсом Грегори в 1663 году. В системе Грегори излучение от главного вогнутого параболического зеркала направляется на небольшое вогнутое эллиптическое зеркало, которое отражает пучок в фотоприемное устройство, помещённое в центральном отверстии главного зеркала. Наличие вторичного зеркала удлиняет фокусное расстояние и тем самым даёт возможность применять большие увеличения.

Размер приемного телескопа, построенного по схеме Грегори, получается больше, чем телескоп Ньютона и почти вдвое больше, чем объектив Кассегрена, что увеличивает экранирование, усложняет юстировку и её сохранность, транспортировку и эксплуатацию в целом.

Данная схема не получила такого распространения, как схемы Ньютона и Кассегрена, так как при прочих равных ее недостатки более существенны, и используется в некоторых специфических случаях.

Заключение

В процессе изучения зеркальных объективов, используемых в лидарах, и сравнения между собой различных схем, я сделал следующий вывод:

Зеркальные объективы имеют ряд преимуществ (по сравнению с линзовыми):

ѕ Высокая светосила и разрешающая способность

ѕ Отсутствие хроматических аберраций у зеркал

ѕ Высокий коэффициент светопропускания

ѕ При сравнительно несложной конструкции зеркальных систем можно получить достаточно совершенную коррекцию сферической аберрации

ѕ Зеркальные системы не содержат преломляющих поверхностей и поэтому удобны для использования в ИК и УФ областях спектра

Но кроме преимуществ зеркальные объективы имеют и недостатки:

ѕ Сложность изготовления и контроля асферических поверхностей зеркал

ѕ Сложность юстировки зеркальных систем

ѕ Сложности, связанные с использованием больших зеркал (влияние погодных условий, необходимость термостабилизации)

ѕ Зеркальные системы, как правило, имеют большую кому, что уменьшает полезное поле системы. Данный недостаток устраняют применением зеркально - линзовых схем.


Подобные документы

    Призменный монокуляр: понятие, назначение, особенности конструкции. Рассмотрение оптической схемы монокуляров с призменными системами О. Малафеева, основные элементы: объектив, окуляр. Этапы аберрационного расчета окуляра с призмой в обратном ходе лучей.

    курсовая работа , добавлен 18.01.2013

    Габаритный расчет оптической системы прибора. Обоснование компонентов микроскопа. Исследование оптический системы объектива на ЭВМ. Расчет конструктивных параметров. Числовая апертура объектива в пространстве. Оптические параметры окуляра Гюйгенса.

    курсовая работа , добавлен 19.03.2012

    Фотоаппарат как оптический прибор. Фокусное расстояние фотообъектива. Поле зрения фотообъектива. Светосила объектива. Просветляющие покрытия. Стандартный ряд относительных отверстий. Разрешающая способность фотообъектива и гиперфокальное расстояние.

    презентация , добавлен 30.01.2015

    Многообразие рынка оптических приборов. Методы контрастирования изображения. Предметные и покровные стекла. Устройства защиты объектива. Система призм и зеркал. Счетные камеры и измерительные приспособления. Современные прямые металлургические микроскопы.

    реферат , добавлен 27.11.2014

    Идеальная оптическая система. Расчет призмы, выбор окуляра. Осесимметричная и пространственная оптическая система. Конструкционные параметры, аберрация объектив и призма. Расчет аберраций монокуляра. Выпуск чертежа сетки. Триора пространства предметов.

    контрольная работа , добавлен 02.10.2013

    Виды световых микроскопов, их комплектация. Правила использования и ухода за микроскопом. Классификация применяемых объективов в оптических приборах. Иммерсионные системы и счетные камеры световых микроскопов. Методы контрастирования изображения.

    реферат , добавлен 06.10.2014

    Роль электротехники в развитии судостроения. Функциональная схема управления асинхронным двигателем с короткозамкнутым ротором. Принцип работы электрической схемы вентилятора. Технология монтажа электрической схемы, используемые материалы и инструменты.

    курсовая работа , добавлен 12.12.2009

    Теоретический анализ основных контуров газонаполненного генератора импульсных напряжений, собранного по схеме Аркадьева-Мракса. Расчет разрядной схемы ГИН, разрядного контура на апериодичность. Измерение тока и напряжения ГИНа. Конструктивное исполнение.

    курсовая работа , добавлен 19.04.2011

    Выбор схемы генератора импульсов напряжения и общей компоновки конструкции. Расчет разрядного контура генератора, разрядных, фронтовых и демпферных сопротивлений, коммутаторов импульсной испытательной установки. Разработка схемы управления установкой.

    курсовая работа , добавлен 29.11.2012

    Понятие и сферы практического использования электронно-оптических преобразователей как устройств, преобразующих электронные сигналы в оптическое излучение или в изображение, доступное для восприятия человеком. Устройство, цели и задачи, принцип действия.