Как работает разрядник схема для чайников. Высоковольтные разрядники: виды и назначение. Резюмируем полученную информацию

Спецификой проблемы грозозащиты на ВЛЗ (воздушных линиях с защищенными проводами) является то, что если провода в изоляции ничем не защищать, то при грозовом перенапряжении и перекрытии изолятора образуется дуга, которой просто некуда перемещаться по проводу.

Соответственно она горит в месте пробоя изоляции до срабатывания защиты на подстанции и аварийного отключения ВЛ. Так как защита в этом случае срабатывает не сразу, то могут произойти следующие последствия:

  • повреждение изоляции СИП-3
  • разрушение самого изолятора на ВЛЗ
  • пережог и обрыв провода

Именно пережог провода является главным условием необходимости применения для СИП-3 устройств грозозащиты.

Дугозащитные рога

Первоначально широко применялась система дугозащитных "рогов". Когда дуга и однофазное замыкание искусственно переводились в двухфазное КЗ с гарантированным отключением ЛЭП.

Однако эта система имеет существенные недостатки:

  • она не защищает изоляцию от перенапряжения
  • не предотвращает отключения линии, а наоборот способствует этому

А между тем для линий с изолированной нейтралью однофазное замыкание не является аварийным режимом, требующим немедленного отключения.

Кроме того, "рога" периодически обгорают и требуют замены.

А при прохождении ВЛЗ через посадки и лесные просеки возможны межфазные замыкания из-за касания веток.

Поэтому для защиты ВЛЗ среднего напряжения 6-20кв от грозовых перенапряжений стали применять специальные устройства - длинно искровые разрядники петлевого типа РДИП.

Длинно искровые разрядники

Эти устройства должны устанавливаться на всем протяжении ВЛ, на подходах к подстанции и кабельным вставкам. Это позволяет исключить перекрытие изоляции на линии и свести на нет негативные последствия индуктированных грозовых перенапряжений.

При этом не должно происходить:

  • аварийных отключений ЛЭП
  • разрушение изоляторов
  • пережог провода
  • плюс обеспечивается защита подстанционного оборудования и кабельных вставок

Длинно искровые разрядники РДИП или PDR-10 (фирмы Niled) должны быть установлены на защищенном участке трассы по одному на каждую опору с циклическим чередованием фаз.

То есть:

  • на опоре №1 подключаем разрядник на фА
  • на опоре №2 на фВ
  • на опоре №3 на фС

Ставить на соседние фазы промежуточной опоры со штыревой изоляцией одновременно два разрядника РДИП не совсем желательно, даже если позволяет место. В противном случае однофазное замыкание может перейти в двухфазное с последующим аварийным отключением ВЛ.

Монтаж РДИП на ВЛ-6-10кв со штыревыми изоляторами

Закрепляете разрядник хомутом на штыре изолятора.

Чтобы выставить зазор между проводом СИП-3 и разрядником, разрешается вручную изменять изгиб петли. Далее монтируется универсальный или прокусывающий зажим. Он ставится с внутренней стороны петли.

Регулируется воздушный зазор. Его величина для ВЛЗ-6-10кв:

  • 40мм от провода СИП
  • 20мм от универсального зажима

Установка на натяжную гирлянду

Первым делом ослабляете крепление плеч разрядника. После чего РДИП отделяется от крепежа.

Кронштейн разворачивается на 180 градусов и одевается только на одно из плеч.

Делается это для того, чтобы петлю разрядники можно было продеть через провод СИП не разрывая его. Теперь оба плеча можно вновь затянуть.

Закрепляете кронштейн крепления на верхней серьге гирлянды и выставляете воздушный зазор. Он замеряется между центральным электродом на разряднике и ближайшей металлической частью арматуры.

Если нет возможности закрепить РДИП за гирлянду, то используют подходящие крепления траверс и укосов.

Разновидности крепежа и расстояния для петлевого разрядника на ВЛЗ-6-10кв:

Угловая анкерная опора Повышенная угловая промежуточная Угловая промежуточная Двухцепная угловая промежуточная Двухцепная анкерная Угловая анкерная Одноцепная угловая промежуточная

Недостатки РДИП

Однако длительный период эксплуатации показывает, что такого типа защита не всегда полностью выполняет свои функции. На некоторых ВЛ число однофазных КЗ может даже увеличиться.

Кроме того, испытания подтверждают что не всегда РДИП может защитить изоляцию на соседних опорах. То есть на последующих двух, где он не установлен по этой фазе. Здесь многое будет зависеть от марки изолятора, расстояния между опорами и уровня перенапряжения.

Даже изоляторы ШФ-20 может перекрыть.

Вот наглядное испытание в лаборатории:

Разрядники РМК-20, MCR

Поэтому в последнее время наряду с устройствами петлевого типа, стали широко применяться разрядники с мультикамерной системой РМК-20 или MCR (Niled).

Он более компактен и удобен в монтаже. По области применения и схеме установки MCR (РМК-20) аналогичен традиционным длинно-искровым. То есть также устанавливается на каждой опоре с чередованием фаз.

Из чего же состоит РМК-20:




Он также может дополняться индикатором срабатывания.

Конструкция кронштейна универсальна и позволяет крепить РМК-20 на промежуточных и анкерных опорах СВ-105,110,164 с несколькими типами изоляции.

Подготовка к монтажу

Перед установкой обязательно произведите внешний осмотр. Разрядный элемент должен быть без трещин, порезов, механических вмятин и т.д. Попробуйте прилагая легкое усилие согнуть элемент. Он должен быть достаточно упругим и сразу же восстанавливать свою изначальную форму.

Если в комплекте идут индикаторы срабатывания, то проверьте целостность стеклянной непрозрачной колбы.

Изначально разрядник поставляется в разобранном виде. Поэтому его необходимо собрать в единую конструкцию. Болтом с гайками и шайбами соединяете кронштейн и мультикамерную систему.

Монтаж РМК-20 на штыревой изолятор

Разрядник своим креплением устанавливается непосредственно на штырь под изолятором. Причем кронштейн изначально должен быть слегка ослаблен для возможности регулировки его положения.

Угол смещения разрядника относительно оси провода должен находиться в пределах 30 градусов.

Также регулируется расстояние от кронштейна до нижней юбки изолятора - 30мм. Делать это лучше всего с помощью шаблона.

После регулировки болты кронштейна можно затягивать. Усилие затяжки 25Нм.

Между проводом СИП-3 и наконечником РМК-20 должен быть воздушный промежуток фиксированной величины. Для этого на провод монтируется универсальный зажим.

Для ВЛЗ с проводами СИП-3 зажим имеет прокалывающий шип.

Важное замечание: если провод фиксируется на изоляторе спиральной вязкой, то шип должен проходить между ее витками, не повреждая саму вязку!

Универсальный зажим затягивается в горизонтальном положении.

Далее чтобы отрегулировать воздушный зазор, слегка откручиваете болтовое крепление и отводите разрядник в нужную сторону. Величину воздушного промежутка между концевым сферическим электродом и зажимом на СИП-3 прощу всего выставить по шаблону.

Этот зазор должен быть в следующих пределах:

  • для ВЛ-6-10кв - 40-60мм
  • для ВЛ-20кв - 50-70мм

Обратите внимание, что изгибать разрядник без ослабления его кронштейна запрещается. Иначе можете повредить внутренний армирующий элемент.

Разрядник закрепляется сверху на серьге подвесного изолятора.

Угол смещения элемента разрядника от оси провода - 30 градусов.

Выставив угол, кронштейн затягивается. Далее регулируете зазоры. Расстояние по горизонтали между юбкой верхнего изолятора и электродом разрядника должно быть примерно 30мм. Выставив его затягиваете все гайки.

Универсальный зажим здесь устанавливается максимально близко, вплотную к поддерживающему зажиму гирлянды.

При монтаже индикатора срабатывания соблюдайте его вертикальное расположение. В то же время он должен располагаться под сферическим электродом разрядника.

На проводе, напротив сферического наконечника, сразу за натяжным зажимом, закрепляется универсальный, либо индикатор срабатывания.

При этом он не должен быть на расстоянии ближе чем 50мм от края юбки изолятора.

Воздушный зазор до элемента самого РМК-20 здесь находится в более широких величинах - 50-100мм.

Устройство и принцип действия разрядников

1.Общие сведения

Трубчатые разрядники

Вентильные разрядники

Разрядники постоянного тока

Ограничители перенапряжений

Длинно-искровые разрядники

1.Общие сведения

При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.

Рис.1. Согласование характеристик разрядника и защищаемого оборудования

перенапряжение разрядник электрическая установка

Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис.1) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током I, проходящим через разрядник, сопротивлениями разрядника и заземления Rз. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т.е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.

Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежуток оказывается ионизированным и легко пробивается номинальным фазным напряжением. Возникает КЗ на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пределах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в возможно малое время (около полупериода промышленной частоты).

К разрядникам предъявляются следующие требования.

Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и должна быть пологой.

Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.

Остающееся напряжение на разряднике, характеризующее его ограничивающую способность, не должно достигать опасных для изоляции оборудования значений.

Сопровождающий ток частотой 50 Гц должен отключаться за минимальное время.

Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Рис.2. Обозначение разрядников

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727-68.

Общее обозначение разрядника

Разрядник трубчатый

Разрядник вентильный и магнитовентильный

Промышленность выпускает вентильные разрядники серий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.

Разрядник РН - низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудования напряжением 0,5 кВ.

Разрядник РВН - вентильный, для защиты от атмосферных перенапряжений изоляции электрооборудования.

Разрядник РНК предназначен для защиты устройств контроля изоляции вводов высокого напряжения трансформаторов.

Разрядник РВРД - вентильный, с растягивающейся дугой, предназначен для защиты изоляции электрических машин от атмосферных и кратковременных внутренних перенапряжений.

Разрядник РМВУ - вентильный, магнитный, униполярный, предназначен для защиты от перенапряжений изоляции тягового электрооборудования в установках постоянного тока.

Разрядник РА - серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и компенсаторов) с номинальным током возбуждения до 3000 А.

Разрядник РВО - вентильный облегченной конструкции; разрядник РВС - вентильный станционный; разрядник РВТ - вентильный, токоограничивающий; разрядник PC - вентильный для защиты электроустановок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК - вентильные с магнитным гашением дуги, модификации Г и А, комбинированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной способности разрядников) изоляции оборудования электрических станций и подстанций переменного тока номинальным напряжением 15-500 кВ.

Трубчатые разрядники РТВ и РТФ - винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции линий электропередачи и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.

Трубчатые разрядники

Рис.3. Трубчатый разрядник

Трубчатый разрядник (рис.3) при нормальной работе установки отделен от линии воздушным промежутком S2. При появлении перенапряжения пробиваются промежутки S1 и S2 и импульсный ток отводится в землю. После прохождения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В узком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в промежутке S1 между электродами 2 и 3 загорается дуга. Внутри обоймы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3.При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка S1 газами, выходящими из разрядника. В заземленном электроде 4 имеется буферный объем 5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.

Предельный отключаемый ток промышленной частоты определяется механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотканью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц определяется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значения тока КЗ в месте установки разрядника.

Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.

Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При размещении разрядников необходимо, чтобы в эту зону не попадали элементы, находящиеся под высоким потенциалом.

Защитная характеристика разрядника в значительной степени зависит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать равномерным с целью более полного использования изоляционных материалов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зависящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесными изоляторами). При выборе трубчатого разрядника необходимо рассчитать возможный минимальный и максимальный ток КЗ в месте установки и по этим токам выбрать соответствующий разрядник. Номинальное напряжение разрядника должно соответствовать номинальному напряжению сети. Размеры внутреннего S1 и внешнего S2 промежутков выбираются по специальным таблицам.

Вентильные разрядники

Рис. 4. Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)

Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис.4,а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7.

Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис.4,б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.

После пробоя искровых промежутков напряжение на разряднике

Если сопротивление разрядника Rр определяемое рабочими резисторами, линейное, то напряжение на разряднике растет пропорционально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения Uр сопротивление Rр выполняется нелинейным и с ростом тока уменьшается. Зависимость между напряжением и током в этом случае выражается как

где А -постоянная, характеризующая напряжение на сопротивлении Rp при токе 1 А; α -показатель нелинейности. Случай, когда α=0, является идеальным, так как напряжение Up не зависит от тока.

Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения.

Рис.5. Вольт-амперная характеристика вилитового резистора

В качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности α=0,13-0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис.5,а. При небольших токах сопротивление Rp велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение Uр почти не растет (область В).

Основу вилита составляют зерна карборунда SiC с удельным сопротивлением около 10-2 Ом·м. На поверхности карборундовых зерен создается пленка оксида кремния SiO2 толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104-106 Ом·м. При увеличении приложенного напряжения сопротивление пленки резко уменьшается, сопротивление определяется в основном зернами карборунда и падение напряжения ограничивается..

Рабочие резисторы изготавливаются в виде дисков диаметром 0,1-0,15 м и высотой (20-60)·10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой.

Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются.

Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение

Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.

При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.

Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.

После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз φ между током и напряжением (φ->0). На рис.5,б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого индуктивным сопротивлением Х; 3 -кривая тока, определяемого рабочим резистором (Rр>>X). Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств.

Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5-1)·10-3 м.

Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.

Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80-100 А при действующем значении напряжения 1-1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80-100 А. При этом гашение дуги обеспечивается за один по л у пери од.

Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.

Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности α=0,15- 0,29.

Рис.6. Комбинированный разрядник с тервитовыми резисторами

Тервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).

Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.

С помощью искровых промежутков, показанных на рис. 4,б невозможно отключение токов 200-250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.

Основные характеристики вентильного разрядника:

Напряжение гашения Uгаш - наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапряжение, то напряжение гашения, прикладываемое к разряднику, определяется уравнением

где Кз - коэффициент, зависящий от способа заземления нейтрали; Uном - номинальное линейное напряжение сети. Для установок с заземленной нейтралью Кз=0,8, для изолированной нейтрали Кз = l,l.

Ток гашения Iгаш, под которым понимается сопровождающий ток, соответствующий напряжению гашения Uгаш.

Дугогасящее действие искрового промежутка характеризуется коэффициентом

где Uпр - напряжение пробоя частотой 50 Гц искрового промежутка.

Защитное действие нелинейного резистора характеризуется коэффициентом защиты

где Uост - напряжение на разряднике при импульсном токе 5-14 кА. Это напряжение должно быть на 20-25 % ниже разрядного напряжения защищаемой изоляции.

4.Разрядники постоянного тока

Рис.7. Разрядник постоянного тока

Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20-30 В.

Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродинамическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного охлаждения дуги ее сопротивление увеличивается и ток прекращается.

Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис.7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с двумя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков достигается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт снизу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплотнением 5.

Ограничители перенапряжений

На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110-500 кВ.

ОПН представляет собой нелинейный резистор с высоким коэффициентом нелинейности α=0,04 (против 0,1 -0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциальным выводом и землей) без разрядных промежутков. Благодаря высокой нелинейности при номинальном фазном напряжении через ОПН протекает ничтожный ток 1 мА. При увеличении напряжения сопротивление ОПН резко уменьшается, ток, протекающий через него, растет. При напряжении 2,2Uф через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.

Рис.8. Вольт-амперная характеристика ограничителя ОПН-500

ОПН ограничивают коммутационные перенапряжения до уровня 1,8Uф и атмосферные перенапряжения до (2-2,4)Uф. Из вольт-амперной характеристики ОПН-500 (рис.8) видно, что при снижении перенапряжений с 2Uф до Uф ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Высокая нелинейность резисторов ОПН (для области больших токов α≈0,04) позволяет значительно снизить перенапряжения и уменьшить габариты оборудования, особенно при напряжении 750 и 1150 кВ.Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напряжения.

Длинно-искровые разрядники

Авторы идеи РДИ Подпоркин Георгий Викторович, доктор технических наук, профессор Политехнического Университета Санкт - Петербурга, Senior Member IEEE, и Сиваев Александр Дмитриевич, кандидат технических наук, начали первые эксперименты по разработке длинно - искровых разрядников ещё в 1989 году, а в 1992 было получено авторское свидетельство.

Рис.9. Схема длинно-искрового разрядника

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

Разрядник длинно-искровой петлевого типа (РДИП)

РДИП-10 предназначен для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и рассчитан для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Разрядник длинно-искровой модульный (РДИМ)

РДИМ предназначен для защиты от прямых ударов молнии и индуктированных грозовых перенапряжений воздушных линий электропередачи (ВЛ) и подходов к подстанциям напряжением 6, 10 кВ трехфазного переменного тока с неизолированными и защищенными проводами.

РДИМ обладает наилучшими вольт-секундными характеристиками, именно поэтому его целесообразно применять для защиты участков линии, подверженных прямым ударам молнии, а также для защиты подходов к подстанциям ВЛ.

РДИМ состоит из двух отрезков кабеля с корделем, выполненным из резистивного материала. Отрезки кабеля сложены между собой так, что образуются три разрядных модуля 1, 2, 3.

РАЗРЯДНИКИ.

Выполнила: Шлёмина Е. В.

Группа: 7203

Факультет: ЭЛ

Проверил: Барченко В. Т.

Санкт-Петербург

1. Введение…………………………………………………………………..3

2. Типы разрядников………………………………………………………..3

3. Виды разрядников………………………………………………………..4

4. Общее обозначение разрядника………………………………………..10

5. Вольт-секундная характеристика……………………………………...10

6. Список литературы……………………………………………………..13

Введение.

Разрядник - устройство для замыкания электрических цепей посредством электрического разряда в газе, вакууме или (реже) твёрдом диэлектрике; содержит 2 или более электрода, разделённых одним или более разрядным промежутком, проводимость которого резко меняется, когда разность потенциалов между электродами становится равной некоторой определённой при данных условиях величине - напряжению пробоя. В зависимости от состояния разрядного промежутка и параметров электрической цепи в разрядники могут иметь место различные формы разряда: искровой разряд,тлеющий разряд (в т. ч. коронный разряд),дуговой разряд, высокочастотный разряд или смешанные формы. Разрядники применяются в электротехнике и различных областях радиоэлектроники, в автоматике и экспериментальной физике; они служат для защиты электрических цепей и приборов от перенапряжений, для переключения высокочастотных и высоковольтных электрических цепей, их используют также при измерении высоких напряжений, а иногда - в качестве индикаторов степени разрежения в вакуумных системах.

Типы разрядников.

В соответствии с функциональным назначением выделяют два основных типа разрядников - защитные и управляющие. Защитные разрядники позволяют предотвращать чрезмерное возрастание напряжения на линии или на той установке, к которой они подсоединены, вследствие пробоя разрядника. Простейшими разновидностями разрядников, используемых для защиты электрических сетей, являются стержневые и роговые разрядники, состоящие из двух разделённых воздушным промежутком электродов (соответственно в виде стержней или изогнутых рогов). Один из электродов подсоединяют к защищаемому устройству, другой - заземляют. Т. к. при пробое проводимость газоразрядного промежутка резко возрастает, то разрядный ток не прекращается и после спадания напряжения до нормальной величины. Этот ток (т. н. сопровождающий ток), являющийся током замыкания системы (или установки) на землю, приводит к срабатыванию релейной защиты, что влечёт за собой временное прекращение электроснабжения установки или участка сети. Срабатывание релейной защиты в случае переменного тока можно предотвратить применением трубчатых разрядников, обеспечивающих гашение дуги сопровождающего тока. В трубчатых разрядниках разрядный промежуток расположен в канале трубки, выполненной из изоляционного газогенерирующего материала. Под действием тепла, выделяющегося в дуге сопровождающего тока, материал трубки разлагается с выделением большого количества газа; при этом давление в канале трубки повышается, образуется поток газа, гасящий дугу при переходе сопровождающего тока через нулевое значение. Трубчатые Р. используются, как правило, для защиты линий электропередачи переменного тока от грозовых перенапряжений.

Для обеспечения эффективной работы защитных разрядников пробивное напряжение последних должно быть высокостабильным (не зависящим от атмосферных условий и состояния электродов). Кроме того, вольт-секундная характеристика разрядного промежутка - кривая зависимости его пробивного напряжения от скорости нарастания напряжения на нём - должна быть относительно пологой и лежать ниже вольт-секундной характеристики изоляции защищаемого устройства. Этим требованиям удовлетворяют разрядники вентильные, обеспечивающие защиту от грозовых и коммутационных перенапряжений изоляции трансформаторов и др. электрических устройств.

Управляющие разрядники применяются для соединения в определённой последовательности различных элементов генераторов импульсного напряжения, для подсоединения нагрузки к мощным импульсным источникам тока, а также для соединения элементов электрических схем испытательной аппаратуры высокого напряжения и др. Простейший управляющий разрядник - шаровой разрядник, состоящий из двух сферических электродов, разделённых слоем газа. В некоторых типах управляющих разрядников разряд между электродами инициируется в нужный момент путём ослабления электрической прочности разрядного промежутка (например, вспрыскиванием раскалённого газа) или с помощью поджигающего импульса.

Виды разрядников.

Трубчатый разрядник служит для защиты от атмосферных перенапряжений изоляции ВЛ и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением от 3 кВ до 110 кВ, ослабленных мест на линиях электропередачи и на подходах к подстанциям. Подключение трубчатых разрядников к токоведущим частям линий электропередачи производится через внешний искровой промежуток.

Представляет собой комбинацию из двух последовательно включенных искровых промежутков (рис. 1). Первый (внешний) стержневой промежуток S1 выполняет функцию ограничения грозовых перенапряжений. Второй (внутренний) промежуток S2 расположен внутри трубки 1 из газогенерирующего материала. Один конец трубки заглушён заземленным металлическим колпачком 2 с присоединенным к нему стержневым электродом 3. Второй конец трубки открыт и охвачен кольцевым электродом 4. Внутренний промежуток служит для гашения электрической дуги и потому его также именуют дугогасящим.

Рис. 1. Трубчатый разрядник.

При ограничении перенапряжений можно выделить два этапа срабатывания трубчатый разрядник. На первом этапе при воздействии грозового импульса пробиваются оба искровых промежутка и через них протекает импульсный ток, отводящий энергию перенапряжения в землю и тем самым ограничивающий его. Вольт-секундная характеристика трубчатого разрядника определяется в основном размерами внешнего промежутка и имеет вид, характерный для всех стержневых промежутков в атмосферном воздухе. Повторный пробой ионизированных промежутков рабочим напряжением приводит к зажиганию между электродами электрической дуги. Начинается второй этап срабатывания трубчатого разрядника - гашение дуги сопровождающего тока. Под действием высокой температуры дуги с внутренней поверхности трубки выделяется большое количество газа, повышающее давление в ней до 15 МПа. Газы устремляются к открытому концу трубки и создают продольное по отношению к горящей дуге дутье, которое позволяет погасить дугу при первом же переходе тока через нулевое значение. Срабатывание РТ сопровождается выхлопом значительного количества раскаленных ионизированных газов и сильным звуковымэффектом.
Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила, с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги.

Вентильный разрядник служит средством ограничения перенапряжений оборудования электроустановок, возникающих при коммутациях электрических цепей, разрядах молнии и т. п.

Рис. 2. Вентильный (однофазный) разрядник.

Состоит из искровых промежутков (1) и нелинейных резисторов (2), заключенных в герметично закрытую фарфоровую покрышку (3), которая защищает внутренние элементы разрядника от воздействия внешней среды и обеспечивает стабильность характеристик.

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора - снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством - его сопротивление нелинейно - оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое называние. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ) состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

Рис. 3. Магнитовентильный разрядник.

На напряжение 35-500 кВ нашли применение разрядники магнитовентильные типа РВМ. Они отличаются от других типов разрядников наличием блоков магнитных искровых промежутков (рис. 3). Такие стандартные блоки искровых промежутков, дополненные дисковыми вилитовыми резисторами изготовляются на напряжение 35 кВ. Блок магнитных искровых промежутков состоит из набора единичных искровых промежутков 2, разделенных между собой кольцевыми магнитами 3. Единичный искровой промежуток составляется из двух концентрически расположенных медных электродов 6 и 8, между которыми образуется кольцевая щель 7. Возникающая в щели дуга вращается под действием постоянных магнитов с большой скоростью, что способствует ее быстрому гашению Набор из постоянных магнитов и единичных искровых промежутков помещается внутри фарфоровой покрышки 1, закрытой стальными крышками 5. Магниты и медные электроды плотно сжимаются стальной пружиной 4.

Ограничитель перенапряжения – это разрядник без искровых промежутков. Активная часть такого разрядника состоит из последовательного набора варисторов, проводимость которых нелинейно зависит от приложенного напряжения.

Разрядник без искровых промежутков обладает особой быстротой срабатывания: при возникновении перенапряжения сопротивление такого разрядника резко снижается, возрастая сразу после прохождения заряда (менее чем за 1 наносекунду). При этом сохраняется стабильность характеристики варисторов после многих срабатываний вплоть до окончания указанного срока эксплуатации, что устраняет необходимость в эксплуатационном обслуживании.

Рис. 4. Ограничитель перенапряжения.

1. Усиливающие элементы
2. Варисторы
3. Покрышка новой резины
4. Защитная лента
5. Фланец

ОПН в полимерном корпусе могут состоять из одного или нескольких модулей, каждый из которых содержит одну колонку варисторов. Варисторы не обладают "кумулятивным" эффектом, т.е. их вольт-амперная характеристика не зависит от числа срабатываний ОПН. Силиконовая покрышка наносится на активную часть методом непосредственного вакуумного литья в специальной холдинговой машине. Фланцы соединены друг с другом двумя или более усиливающими элементами из стекловолокна, что придает ОПН высокие механические характеристики. Благодаря тому, что силиконовая изоляция наносится непосредственно на вариаторы, внутри нет воздуха и, как следствие, отсутствуют внутренние частичные разряды. Кроме того, улучшаются условия охлаждения варисторов, что улучшает энергопоглащающую способность ОПН.
ОПН состоит из внешнего изолятора, выполненного из негаллогенированной силиконовой резины с концевыми фланцами и выводами, выполненными из нержавеющей стали, алюминия или меди. Внутренняя часть ОПН состоит из металлооксидных варисторов, стальных прокладок, алюминиевыхкомпонентов, стекловолоконных стяжек и арамидных волокон. Металлоксидные варисторы представляют собой агломератные «таблетки», состоящие в основном из ZnO (90%) и др. веществ (более 1%): Bi 2 O 3 , Sb 2 O 3 , NiO, Cr 2 O 3 . Металлоксидные варисторы покрыты слоем тонкого стекла (<0,1 % веса), содержащим РbО. Силиконовая резина, используемая для внешней изоляции, обладает значительно более высокой гидрофобностью и стойкостью к воздействию ультрафиолетовой радиации, чем фарфоровая изоляция. Кроме того, применение полимерной изоляции снижает массогабаритные параметры ОПН, что расширяет возможность их применения. ОПН могут монтироваться по так называемой «перевернутой» схеме, когда подвод напряжения осуществляется снизу.

ОПН 6-110 кВ с полимерной изоляцией, по сравнению с вентильными разрядниками, обладают целым рядом преимуществ:

1. варисторы, применяемые в ОПН, обладают высокой стабильностью, которая
не изменяется в процессе длительной эксплуатации;

2. большое быстродействие срабатывания ОПН при коммутационных и
грозовых перенапряжениях;

3. отличные пиковые характеристики ОПН в широком диапазоне рабочей
температуры;

4. применение варисторов в одно колонковом исполнении позволяет
обеспечить особенно глубокое ограничение напряжений и, соответственно, более
высокую надежность работы оборудования и улучшение параметров сети;

5. уменьшение габарита и веса ОПН в 10 - 20 раз позволяет установить их
непосредственно вблизи защищаемого оборудования;

6. высокая механическая прочность и малая масса ОПН позволяет
устанавливать их на ВЛ 6-110 кВ без усиления конструкции опор;

7. ОПН в полимерном корпусе не требуют специального обслуживания, не
повреждаются при транспортировке и хранении;

8. малые массо-габариты ОПН позволяют легко выполнять их монтаж при
минимальном использовании техники.

Общее обозначение разрядника.

Рис. 5. Обозначение разрядников.

1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН

28.09.2015


Устройство, внешний вид


Независимо от типа разрядники обязательно имеют искровые промежутки, а также резисторы: рабочие и шунтирующие. Далее конструкция помещается в фарфоровый корпус и закрывается во всех фланцах с применением армировочных растворов. Именно такими мы их видим на подстанциях и распределительных устройствах.


Применяется краска, устойчивая к влаге, и эмаль, которые кладутся поверх армировки. Разрядники отличаются классовым напряжением, которое определяет число миканитовых шайб (из них производятся искровые промежутки), а также их соотношением с сопротивлением рабочего резистора.


В процессе работы распределительного устройства, когда напряжение увеличивается до пробивного, сопротивление рабочего резистора, наоборот, падает, что говорит о его нелинейности.

Вилитовые (реже - тервитовые) диски применяются как основа для рабочего резистора. Они отличаются таким свойством как гигроскопичность, что объясняет необходимость герметичности корпуса разрядника и соединительных стыков.



Основные типы разрядников

  • Разрядники РВН, РВО, РВЭ, РВП и РВС применяются исключительно для предохранения распределительных устройств и прочего высоковольтного оборудования от сбоев во время грозы. У последних продолжительность импульса меньше по сравнению с коммутационными, что важно для этих типов устройств, ведь их возможности ограничены возможностью погашения дуги искровыми промежутками. Все выводы выходят из состава таких разрядников: конструкция состоит из включенных друг за другом искровых промежутков и рабочего сопротивления.
  • РВРД, РВМГ и РВМ: эти разрядники на любом распределительном устройстве способны погасить дугу. Возможность достигается за счет магнитного поля, которое действует от постоянных магнитов: в искровом промежутке дуга растягивается и пропадает. Устройства этих видов способны не только оградить распределительно устройство или другое высоковольтное оборудование от губительного действия грозовых разрядов, но и защитить от коммутационных перенапряжений небольшой продолжительности.
  • Разрядники РВМК будут лучшей защитой от коммутационных перенапряжений, они имеют в своей конструкции следующие модули:
    • искровой, состоящий исключительно из искровых промежутков,
    • вентильный, который представлен только резисторами,
    • основной, где расположены и рабочие резисторы, и искровые промежутки.
Существует разрядник РВМК 750 (1150), который также устроен по модульному типу: все модули имеют в своем составе конденсаторы, блок шунтирующих сопротивлений, коммутационную и грозовую части.